Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clinical immunology (Orlando, Fla) ; 250:109369-109369, 2023.
Artigo em Inglês | EuropePMC | ID: covidwho-20244360

RESUMO

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency display autoantibodies (auto-Abs) neutralizing type I IFNs, conferring a predisposition to life-threatening COVID-19 pneumonia. We report that patients with autosomal recessive NIK or RelB deficiency, or a specific type of autosomal dominant (AD) NF-κB2 deficiency also display neutralizing auto-Abs against type I IFNs. They are prone to severe viral disease, including life-threatening COVID-19 pneumonia, influenza pneumonia, and severe form of varicella. Among patients with AD NF-κB2 deficiency, these auto-Abs are found only in heterozygotes with variants that are both transcriptionally loss-of-function (p52 activity), due to impaired p100 processing into p52, and regulatory gain-of-function (IκBδ activity), due to accumulation of unprocessed p100, thus increasing the inhibitory IκBδ activity (p52LOF/IκBδGOF). Conversely, neutralizing auto-Abs against type I IFNs are not found in individuals heterozygous for NFKB2 variants causing either p100 and p52 haploinsufficiency (p52LOF/IκBδLOF), or p52 gain-of-function (p52GOF/IκBδLOF). Unlike patients with APS-1, patients with disorders of NIK, RelB, or NF-κB2 harbor very few other auto-Abs. Their thymuses are however abnormally structured, and their medullary thymic epithelial cells (mTECs) have defective AIRE expression. Human inborn errors of the alternative NF-κB pathway impair thymic AIRE expression in mTECs, thereby underlying the production of auto-Ab against type I IFNs and predisposition to viral diseases.

2.
J Interferon Cytokine Res ; 2023 May 29.
Artigo em Inglês | MEDLINE | ID: covidwho-20244163

RESUMO

Autoantibodies (AABs) neutralizing type I interferons (IFN) underlie about 15% of cases of critical coronavirus disease 2019 (COVID-19) pneumonia. The impact of autoimmunity toward type III IFNs remains unexplored. We included samples from 1,002 patients with COVID-19 (50% with severe disease) and 1,489 SARS-CoV-2-naive individuals. We studied the prevalence and neutralizing capacity of AABs toward IFNλ and IFNα. Luciferase-based immunoprecipitation method was applied using pooled IFNα (subtypes 1, 2, 8, and 21) or pooled IFNλ1-IFNλ3 as antigens, followed by reporter cell-based neutralization assay. In the SARS-CoV-2-naive cohort, IFNλ AABs were more common (8.5%) than those targeting IFNα2 (2.9%) and were related with older age. In the COVID-19 cohort the presence of autoreactivity to IFNλ did not associate with severe disease [odds ratio (OR) 0.84; 95% confidence interval (CI) 0.40-1.73], unlike to IFNα (OR 4.88; 95% CI 2.40-11.06; P < 0.001). Most IFNλ AAB-positive COVID-19 samples (67%) did not neutralize any of the 3 IFNλ subtypes. Pan-IFNλ neutralization occurred in 5 patients (0.50%), who all suffered from severe COVID-19 pneumonia, and 4 of them neutralized IFNα2 in addition to IFNλ. Overall, AABs to type III IFNs are rarely neutralizing, and do not seem to predispose to severe COVID-19 pneumonia on their own.

3.
J Clin Immunol ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2325547

RESUMO

Autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) are found in the blood of at least 15% of unvaccinated patients with life-threatening COVID-19 pneumonia. We report here the presence of auto-Abs neutralizing type I IFNs in the bronchoalveolar lavage (BAL) of 54 of the 415 unvaccinated patients (13%) with life-threatening COVID-19 pneumonia tested. The 54 individuals with neutralizing auto-Abs in the BAL included 45 (11%) with auto-Abs against IFN-α2, 37 (9%) with auto-Abs against IFN-ω, 54 (13%) with auto-Abs against IFN-α2 and/or ω, and five (1%) with auto-Abs against IFN-ß, including three (0.7%) with auto-Abs neutralizing IFN-α2, IFN-ω, and IFN-ß, and two (0.5%) with auto-Abs neutralizing IFN-α2 and IFN-ß. Auto-Abs against IFN-α2 also neutralize the other 12 subtypes of IFN-α. Paired plasma samples were available for 95 patients. All seven patients with paired samples who had detectable auto-Abs in BAL also had detectable auto-Abs in plasma, and one patient had auto-Abs detectable only in blood. Auto-Abs neutralizing type I IFNs are, therefore, present in the alveolar space of at least 10% of patients with life-threatening COVID-19 pneumonia. These findings suggest that these auto-Abs impair type I IFN immunity in the lower respiratory tract, thereby contributing to hypoxemic COVID-19 pneumonia.

4.
J Exp Med ; 220(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2260121

RESUMO

X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4-dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8-207.8, P < 0.001). The patients' susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.


Assuntos
COVID-19 , Fator 88 de Diferenciação Mieloide , Criança , Humanos , Proteínas Adaptadoras de Transdução de Sinal , COVID-19/complicações , Fator 88 de Diferenciação Mieloide/genética , SARS-CoV-2 , Receptor 7 Toll-Like
5.
Respir Res ; 24(1): 87, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2276405

RESUMO

SARS-CoV2 infection has a poor prognosis in patients affected of idiopathic pulmonary fibrosis (IPF). Autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) are found in the blood of at least 15% of patients with life-threatening COVID-19 pneumonia. Because of the elevated prevalence of some auto-Abs in IPF patients, we hypothesize that the prevalence of auto-Abs neutralizing type I IFNs might be increased in the IPF population and then explained specific poor outcome after COVID-19. We screened the plasma of 247 consecutive IPF patients for the presence of auto-Abs neutralizing type I IFNs. Three patients displayed auto-Abs neutralizing type I IFNs. Among them, the only patient with documented SARS-CoV-2 infection experienced life threatening COVID-19 pneumonia. The prevalence of auto-Abs neutralizing type I IFNs in this cohort of IPF patients was not significantly different from the one of the general population. Overall, this study did not suggest any association between auto-Abs neutralizing type I IFNs and IPF.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Interferon Tipo I , Humanos , Autoanticorpos , Prevalência , RNA Viral , SARS-CoV-2 , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/epidemiologia
6.
Proc Natl Acad Sci U S A ; 119(44): e2211194119, 2022 11.
Artigo em Inglês | MEDLINE | ID: covidwho-2288599

RESUMO

Pre-messenger RNA splicing is initiated with the recognition of a single-nucleotide intronic branchpoint (BP) within a BP motif by spliceosome elements. Forty-eight rare variants in 43 human genes have been reported to alter splicing and cause disease by disrupting BP. However, until now, no computational approach was available to efficiently detect such variants in massively parallel sequencing data. We established a comprehensive human genome-wide BP database by integrating existing BP data and generating new BP data from RNA sequencing of lariat debranching enzyme DBR1-mutated patients and from machine-learning predictions. We characterized multiple features of BP in major and minor introns and found that BP and BP-2 (two nucleotides upstream of BP) positions exhibit a lower rate of variation in human populations and higher evolutionary conservation than the intronic background, while being comparable to the exonic background. We developed BPHunter as a genome-wide computational approach to systematically and efficiently detect intronic variants that may disrupt BP recognition. BPHunter retrospectively identified 40 of the 48 known pathogenic BP variants, in which we summarized a strategy for prioritizing BP variant candidates. The remaining eight variants all create AG-dinucleotides between the BP and acceptor site, which is the likely reason for missplicing. We demonstrated the practical utility of BPHunter prospectively by using it to identify a novel germline heterozygous BP variant of STAT2 in a patient with critical COVID-19 pneumonia and a novel somatic intronic 59-nucleotide deletion of ITPKB in a lymphoma patient, both of which were validated experimentally. BPHunter is publicly available from https://hgidsoft.rockefeller.edu/BPHunter and https://github.com/casanova-lab/BPHunter.


Assuntos
COVID-19 , Humanos , Íntrons/genética , Estudos Retrospectivos , COVID-19/genética , Splicing de RNA/genética , Nucleotídeos
7.
J Clin Immunol ; 42(7): 1473-1507, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-2245657

RESUMO

We report the updated classification of inborn errors of immunity, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 55 novel monogenic gene defects, and 1 phenocopy due to autoantibodies, that have either been discovered since the previous update (published January 2020) or were characterized earlier but have since been confirmed or expanded in subsequent studies. While variants in additional genes associated with immune diseases have been reported in the literature, this update includes only those that the committee assessed that reached the necessary threshold to represent novel inborn errors of immunity. There are now a total of 485 inborn errors of immunity. These advances in discovering the genetic causes of human immune diseases continue to significantly further our understanding of molecular, cellular, and immunological mechanisms of disease pathogenesis, thereby simultaneously enhancing immunological knowledge and improving patient diagnosis and management. This report is designed to serve as a resource for immunologists and geneticists pursuing the molecular diagnosis of individuals with heritable immunological disorders and for the scientific dissection of cellular and molecular mechanisms underlying monogenic and related human immune diseases.


Assuntos
Doenças do Sistema Imunitário , Síndromes de Imunodeficiência , Humanos , Síndromes de Imunodeficiência/diagnóstico , Fenótipo , Relatório de Pesquisa
8.
J Clin Immunol ; 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: covidwho-2234299

RESUMO

Mendelian susceptibility to mycobacterial disease (MSMD) is a rare genetic disorder characterized by impaired immunity against intracellular pathogens, such as mycobacteria, attenuated Mycobacterium bovis-Bacillus Calmette-Guérin (BCG) vaccine strains, and environmental mycobacteria in otherwise healthy individuals. Retrospective study reviewed the clinical, immunological, and genetic characteristics of patients with MSMD in Mexico. Overall, 22 patients diagnosed with MSMD from 2006 to 2021 were enrolled: 14 males (64%) and eight females. After BCG vaccination, 12 patients (70%) developed BCG infection. Furthermore, 6 (22%) patients developed bacterial infections mainly caused by Salmonella, as what is described next in the text is fungal infections, particularly Histoplasma. Seven patients died of disseminated BCG disease. Thirteen different pathogenic variants were identified in IL12RB1 (n = 13), IFNGR1 (n = 3), and IFNGR2 (n = 1) genes. Interleukin-12Rß1 deficiency is the leading cause of MSMD in our cohort. Morbidity and mortality were primarily due to BCG infection.

9.
Bastard, Paul, Vazquez, Sara, Liu, Jamin, Laurie, Matthew T.; Wang, Chung Yu, Gervais, Adrian, Le Voyer, Tom, Bizien, Lucy, Zamecnik, Colin, Philippot, Quentin, Rosain, Jérémie, Catherinot, Emilie, Willmore, Andrew, Mitchell, Anthea M.; Bair, Rebecca, Garçon, Pierre, Kenney, Heather, Fekkar, Arnaud, Salagianni, Maria, Poulakou, Garyphallia, Siouti, Eleni, Sahanic, Sabina, Tancevski, Ivan, Weiss, Günter, Nagl, Laurenz, Manry, Jérémy, Duvlis, Sotirija, Arroyo-Sánchez, Daniel, Paz Artal, Estela, Rubio, Luis, Perani, Cristiano, Bezzi, Michela, Sottini, Alessandra, Quaresima, Virginia, Roussel, Lucie, Vinh, Donald C.; Reyes, Luis Felipe, Garzaro, Margaux, Hatipoglu, Nevin, Boutboul, David, Tandjaoui-Lambiotte, Yacine, Borghesi, Alessandro, Aliberti, Anna, Cassaniti, Irene, Venet, Fabienne, Monneret, Guillaume, Halwani, Rabih, Sharif-Askari, Narjes Saheb, Danielson, Jeffrey, Burrel, Sonia, Morbieu, Caroline, Stepanovskyy, Yurii, Bondarenko, Anastasia, Volokha, Alla, Boyarchuk, Oksana, Gagro, Alenka, Neuville, Mathilde, Neven, Bénédicte, Keles, Sevgi, Hernu, Romain, Bal, Antonin, Novelli, Antonio, Novelli, Giuseppe, Saker, Kahina, Ailioaie, Oana, Antolí, Arnau, Jeziorski, Eric, Rocamora-Blanch, Gemma, Teixeira, Carla, Delaunay, Clarisse, Lhuillier, Marine, Le Turnier, Paul, Zhang, Yu, Mahevas, Matthieu, Pan-Hammarström, Qiang, Abolhassani, Hassan, Bompoil, Thierry, Dorgham, Karim, consortium, Covid Hge, French, Covid study group, consortium, Comet, Gorochov, Guy, Laouenan, Cédric, Rodríguez-Gallego, Carlos, Ng, Lisa F. P.; Renia, Laurent, Pujol, Aurora, Belot, Alexandre, Raffi, François, Allende, Luis M.; Martinez-Picado, Javier, Ozcelik, Tayfun, Keles, Sevgi, Imberti, Luisa, Notarangelo, Luigi D.; Troya, Jesus, Solanich, Xavier, Zhang, Shen-Ying, Puel, Anne, Wilson, Michael R.; Trouillet-Assant, Sophie, Abel, Laurent, Jouanguy, Emmanuelle, Ye, Chun Jimmie, Cobat, Aurélie, Thompson, Leslie M.; Andreakos, Evangelos, Zhang, Qian, Anderson, Mark S.; Casanova, Jean-Laurent, DeRisi, Joseph L..
Science immunology ; 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-1918542

RESUMO

Life-threatening ‘breakthrough’ cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals;however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population. Type I IFN auto-Abs are found in 20% of hypoxemic, mRNA vaccinated COVID-19 patients despite SARS-CoV-2 neutralizing antibodies. Description

10.
J Exp Med ; 219(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1758591

RESUMO

The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.


Assuntos
COVID-19 , Candidíase Mucocutânea Crônica , Doenças Transmissíveis , Proteinose Alveolar Pulmonar , Autoanticorpos , Candidíase Mucocutânea Crônica/genética , Humanos
11.
Transfusion Clinique et Biologique ; 28(4):S24-S24, 2021.
Artigo em Francês | Academic Search Complete | ID: covidwho-1492671

RESUMO

L'infection à SARS-CoV-2 conduit à une variabilité inter-individuelle importante. Nous avons identifié que des défauts génétiques de l'immunité lié aux interférons de type 1, TLR3 et IRF7-dépendants, peuvent être la cause de formes sévères de pneumopathie à COVID-19. Les patients déficients en AIRE, souffrent d'APS-1 et produisent de nombreux autoanticorps (auto-Ac), notamment les anti-IFNs de type I. Étonnamment, chez les patients avec des formes sévères de pneumopathie à COVID-19, nous avons trouvé qu'au moins 10 % d'entre eux avaient des auto-Ac IgG neutralisants 10 ng/mL d'IFN-w, d'IFN-a2. Ces auto-Ac neutralisent la capacité des IFNs de type I de bloquer l'infection à SARS-CoV-2 in vitro, et ont été retrouvé dans des plasmas de donneurs convalescents. Nous avons également trouvé des auto-Ac neutralisants des doses 100 fois moindres, donc plus physiologiques chez au moins 15 % des patients avec des formes sévères de pneumopathie à COVID-19, notamment chez 21 % des patients de plus de 80 ans. Enfin, dans un échantillon de 33 352 individus non infectés de la population générale, notamment des donneurs de sang de l'EFS, la prévalence des auto-Ac neutralisants les doses fortes d'IFNs de type I augmente avec l'âge. La proportion d'individus porteurs d'auto-Ac neutralisants des concentrations d'IFN 100 fois plus faibles étaient encore plus élevée. Le dépistage des donneurs de sang et de plasma convalescent pourrait avoir un impact thérapeutique. Les auto-Ac anti-IFNs de type I précèdent l'infection à SARS-CoV-2, augmentent de façon importante après 70 ans, et expliquent au moins 20 % des formes fatales et des formes sévères de COVID-19 chez les individus de plus de 80 ans. (French) [ABSTRACT FROM AUTHOR] Copyright of Transfusion Clinique et Biologique is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

12.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1066211

RESUMO

Yellow fever virus (YFV) live attenuated vaccine can, in rare cases, cause life-threatening disease, typically in patients with no previous history of severe viral illness. Autosomal recessive (AR) complete IFNAR1 deficiency was reported in one 12-yr-old patient. Here, we studied seven other previously healthy patients aged 13 to 80 yr with unexplained life-threatening YFV vaccine-associated disease. One 13-yr-old patient had AR complete IFNAR2 deficiency. Three other patients vaccinated at the ages of 47, 57, and 64 yr had high titers of circulating auto-Abs against at least 14 of the 17 individual type I IFNs. These antibodies were recently shown to underlie at least 10% of cases of life-threatening COVID-19 pneumonia. The auto-Abs were neutralizing in vitro, blocking the protective effect of IFN-α2 against YFV vaccine strains. AR IFNAR1 or IFNAR2 deficiency and neutralizing auto-Abs against type I IFNs thus accounted for more than half the cases of life-threatening YFV vaccine-associated disease studied here. Previously healthy subjects could be tested for both predispositions before anti-YFV vaccination.


Assuntos
Anticorpos Neutralizantes/imunologia , Autoanticorpos/imunologia , Doenças Autoimunes , COVID-19 , Doenças Genéticas Inatas , Interferon-alfa , Receptor de Interferon alfa e beta , SARS-CoV-2 , Vacina contra Febre Amarela , Vírus da Febre Amarela , Adolescente , Adulto , Idoso , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , COVID-19/genética , COVID-19/imunologia , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Células HEK293 , Humanos , Interferon-alfa/genética , Interferon-alfa/imunologia , Masculino , Pessoa de Meia-Idade , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacina contra Febre Amarela/efeitos adversos , Vacina contra Febre Amarela/genética , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/imunologia
13.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1061104

RESUMO

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Plasticidade Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , SARS-CoV-2/imunologia , Biomarcadores , COVID-19/virologia , Citocinas/metabolismo , Células Dendríticas/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Imunomodulação , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Interferon Tipo I/metabolismo , Interferons/metabolismo , Interferon lambda , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA